## Draft Report on the Results of Camera Trapping and Molecular Genetic Analysis<sup>1</sup>

Prepared by

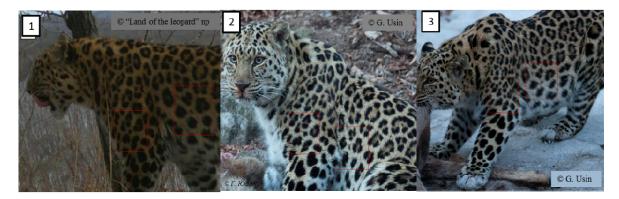
Shevtsova Elena and Vitkalova Anna, the Land of the Leopard National Park, Russia

*Guangshun Jiang, Jiayin Gu, Jinzhe Qi, Meng Wang, and Yao Ning,* Feline Research Center of State Forestry Administration, China

*Marina Igorevna Chaika Valentin Yurievich Guskov, and Kostyria Alexey,* Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Science

Kostyria Alexey and Darman Yurii, WWF-Russia, Amur Branch

<sup>&</sup>lt;sup>1</sup> This paper is extracted from the full report of the NEASPEC Project "Study on Transborder Movement of Amur Tigers and Amur Leopards using Camera Trapping and Molecular Genetic Analysis"


#### 1. Camera trapping

"Land of the Leopard National Park" in the Russian Federation and Feline Research Centre of China exchanged the data from camera traps obtained from 2013 to 2015 and conducted a joint analysis in 2016.

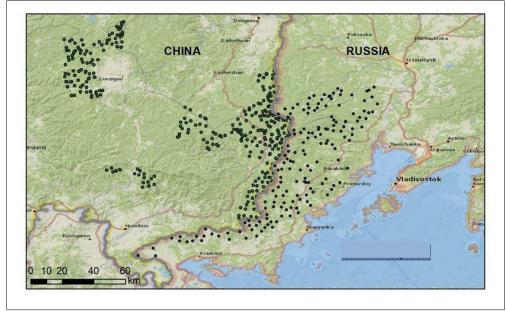
#### 1.1 Field work organization

Estimation of Amur leopard and tiger number by camera traps is possible due to the unique pattern of spots and stripes on the skin of these animals(figure 1) which as unique as human fingerprints. Thanks to this feature, individual identification of animals is possible base on images.

#### Figure 1: Unique Amur leopard pattern of spots



Since the pattern of the animal is asymmetrical on the left and right side (figure 2). Two camera traps facing each other are installed to capture an individual simultaneously from both sides.


Figure 2: Asymmetrical spot pattern on left and right sides of the Amur leopard (one of the images has been reflected)



During 2013-2015, 314 camera traps were installed in 157 different points in the Russian side and 634 camera traps in 317 points in the Chinese side (figure 3).

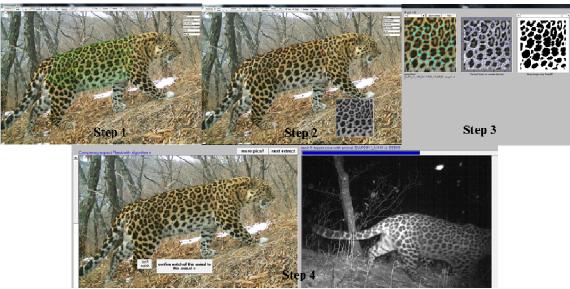
The work involved 10 people in the Russian side and 21 people in the Chinese side.

Camera trapping project in the Russian side was implemented with the federal budget for the Land of Leopard National Park and financial support from "Far Eastern Leopards", an autonomous non-profit organization and the Russian Geographical Society.



#### Figure3: Camera traps locations in Russia and China

#### 1.2. Data analysis


After signing of the agreement, two representatives from the Feline Research Centre (FRC) visited Vladivostok and jointly with "Land of the Leopard" National Park (LL) made an analysis of data from camera traps. Both sides had submitted at least one photo of left and right side of each Amur tiger and Amur leopard captured during the period from 2013 to 2015.

Leopard and tiger identification using camera traps images was done by two methods: manual and using the Extract-Compare software.

*The Manual method* is a visual comparison of spot (figure 1) or line patterns from different photos by a specialist without using any software.

*The Extract-Compare software* captures image of lines (or spots) on the animal's side and uses a standard algorithm to differentiate patterns on the skin in different individuals (figure 4).

# Figure 4: Consistent individual identification of leopard specimens in *Extract-Compare* software



#### 1.3. Results

#### 1.3.1. Amur leopard

FRC provided images of 24 leopard individuals: 23 adults and 1 cub. 19 of them had images of both sides – left and right, 5 – only right or only left side.

LL provided images of 95 leopard individuals: 82 adults and 13 cubs. 81 of them had images of both sides and 14 – only right or only left side.

After precise analysis of the images using Extract-Compare software and visual comparison of spot patterns totally 105 leopard individuals were distinguished. Among them 91 adult leopards were identified and 14 cubs. Cubs were considered as individuals captured with mother and never seen again as adults. If the individual was captured as a cub but then seen alone as an adult it was considered as an adult in this dataset.

The joint data on leopard individuals is represented in Appendix 1 with the information about the matches between FRC and LL IDs.

Adult individuals were analyzed separately from cubs and the minimal number of captured adult individuals was calculated for different sex separately. Since some individuals were captured only from one side – only left or right side image is available for a leopard – the minimal number of individuals was calculated as number of individuals captured from both sides (LR) plus number of L- or R- individuals depending on what of these two numbers is bigger (see table 1).

Using the above calculation method we revealed that at least 89 adult leopard individuals were registered both in Russia and in China during 2013-2015 period – 41 female, 37 male and 11 leopards of unknown sex. 15 leopards (17% from the total number) were registered in both countries. Both females (8 individuals) and males (7 individuals) crossed the border. In the same time in each country, there are animals which never crossed the border. There are 66 such leopards in Russia and 8 leopards in China.

|                                                   | Total<br>(adult only) | Female | Male | Unknow sex |
|---------------------------------------------------|-----------------------|--------|------|------------|
| Totally in<br>China and<br>Russia                 | 89                    | 41     | 37   | 11         |
| in China                                          | 23                    | 9      | 10   | 4          |
| in Russia                                         | 81                    | 40     | 34   | 7          |
| Individuals<br>detected in<br>Russia and<br>China | 15                    | 8      | 7    | 0          |
| in China only                                     | 8                     | 1      | 3    | 4          |
| in Russia only                                    | 66                    | 32     | 27   | 7          |

| Table 1: Minimal number of adult Amur leopard individuals captured in 2013-2015 by |
|------------------------------------------------------------------------------------|
| camera traps in Russia and China                                                   |

During this three-year investigation, 10 breeding females were captured on both territories (see table 2).

In China, one female with two cubs was captured in the end of 2013 and in beginning of 2014. One of these 2 cubs (leo 9 = leo 28) still lives in China and has never been captured in Russia.

Totally 19 cubs of 9 females have been captured in Russia in the 2013-2015 period. 7 cubs were captured in 2015 and only future data will show how many of them will become new members of Amur leopard population. The existing data confirms that at least 6 cubs from 12 cubs born in Russia in 2013-2014 are still alive and 2 of them moved to China.

| Table 2: Reproductive indexes | of Amur lea | nard cantured by | camera trans |
|-------------------------------|-------------|------------------|--------------|
| Table 2. Reproductive muexes  | of Amul leo | paru captureu by | Camera maps  |

| Number of<br>cubs | 2013 | 2014 | 2015 | Females with cubs                                                              |
|-------------------|------|------|------|--------------------------------------------------------------------------------|
| in Russia         | 6    | 9    | 7    | Leo 1F, Leo 5F, Leo 7F, Leo 16F,Leo 23F,<br>Leo 39F, Leo 55F, Leo 66F, Leo 89F |
| in China          | 2    | 2    | 0    | Leo 4                                                                          |

For each of the individuals photographed in both sides of international border several parameters of cross-boundary movements were calculated – number of encounters in each country, number of state boundary crossings, maximum distance moved from the border (see table 3).

| LL-ID   | FRC-ID | Numb        | er of encc   | ounters |             | of<br>inters | Times<br>Cross | move<br>the | istance<br>d from<br>state<br>:der | Notes                             |
|---------|--------|-------------|--------------|---------|-------------|--------------|----------------|-------------|------------------------------------|-----------------------------------|
|         |        | In<br>China | In<br>Russia | Total   | In<br>China | In<br>Russia | border         | In<br>China | In<br>Russia                       |                                   |
| Leo 22M | Leo 25 | 2           | 71           | 73      | 2.7         | 97.3         | 4              | 0.64        | 8.7                                |                                   |
| Leo 52M | Leo 1  | 44          | 19           | 63      | 69.8        | 30.2         | 10             | 37.6        | 4.9                                |                                   |
| Leo 25M | Leo 24 | 1           | 41           | 42      | 2.4         | 97.6         | 2              | 1.9         | 7.9                                |                                   |
| Leo 29M | Leo 3  | 10          | 31           | 41      | 24.4        | 75.6         | 9              | 36.3        | 5.7                                |                                   |
| Leo 7F  | Leo 26 | 1           | 30           | 31      | 3.2         | 96.8         | 2              | 7.1         | 15.5                               |                                   |
| Leo 24M | Leo 21 | 1           | 27           | 28      | 3.6         | 96.4         | 2              | 0.6         | 7.1                                |                                   |
| Leo 91M | Leo 12 | 10          | 5            | 15      | 66.7        | 33.3         | 5              | 9.3         | 5.4                                |                                   |
| Leo 26F | Leo 17 | 2           | 13           | 15      | 13.3        | 86.7         | 1              | 0.46        | 3.5                                |                                   |
| Leo 9F  | Leo 10 | 6           | 5            | 11      | 54.5        | 45.5         | 1              | 23.7        | 4.9                                | Captured<br>as a cub in<br>Russia |
| Leo 63F | Leo 11 | 3           | 7            | 10      | 30          | 70           | 1              | 0.46        | 6.2                                |                                   |
| Leo 89F | Leo 14 | 3           | 6            | 9       | 33.3        | 66.7         | 1              | 21.7        | 2.8                                |                                   |
| Leo 54F | Leo 22 | 1           | 7            | 8       | 12.5        | 87.5         | 2              | 2.2         | 6.2                                |                                   |
| Leo 49F | Leo 7  | 2           | 5            | 7       | 28.6        | 71.4         | 1              | 6.8         | 27.7                               |                                   |
| Leo 13F | Leo 27 | 1           | 5            | 6       | 16.7        | 83.3         | 2              | 0.9         | 14.2                               |                                   |
| Leo 81M | Leo 29 | 1           | 1            | 2       | 50          | 50           | 1              | 29.7        | 7                                  | Captured<br>as a cub in<br>Russia |

| Table 3: Cross-boundary movements of leopard individuals captured by camera traps |
|-----------------------------------------------------------------------------------|
| during 2013-2015                                                                  |

The analysis of cross-boundary movements shows that some leopards actively cross the border. They should be resident individuals having their home ranges both in Russia and in China. For example male leopard Leo 29 (=leo 3) crossed the border 9 times during 2013-2014, but totally it was captured there times more in Russia than in China, probably indicating that the biggest part of the home range is situated in Russia. Another male leopard Leo 52M (=leo 1) also actively moved between two countries. It crossed the border 10 times, but appeared in Russia only in 2014 while it was regularly captured in China starting from 2012. This can indicate that this leopard is resident in China and it visited Russia only one year, but 10 times during this year. Maybe it was searching for a female or trying to enlarge his home range. However, it was not captured in 2015 in Russia.

Other leopards crossed the border only once. For example two females - Leo 63F (=leo 11) and Leo 89F(=leo14). These females have been detected in China during 2 years (2012-2013). But since 2014 they have been seen only in Russia.

Two leopards moved across the border were cubs born in Russia. One of them is a young male (leo 29 = Leo 81M) who was captured only twice – first time in Russia in August 2014 and then in China in April 2015 almost 30 km from the border. Another case is a female Leo 9F=leo 10 who was born and captured as a cub with mother in 2013 on Russian territory. Then this leopard was captured alone in the beginning of 2014 by the same camera traps in Russia but in 2015 it crossed the border and moved to China 24 km from the border and was captured 6 times on Chinese side from May till December 2014. Leo 9F was not captured in Russia more. This can indicate the dispersion of young individuals from Russia to China. Future investigations will probably show if these individuals will become resident in China or not.

#### 1.3.2. Amur tiger

FRC provided images of 26 tiger individuals: 22 adults and 4 cubs. 19 of adults had images of both sides – left and right, 3 – only left side, 1 – only right or left side.

LL provided images of 49 tiger individuals: 42 adults and 7 cubs. 37 of adults had images of both sides and 5 - only left side-, 3 only right or left side.

After precise analysis of the images using Extract-Compare software and visual comparison of spot patterns, totally 55 tiger individuals were distinguished. Among them 45 adult tigers were identified and 10 cubs. Cubs were considered as individuals captured with mother and never seen again as adults. If the individual was captured as a cub but then seen alone as an adult it was considered as an adult.

The joint data on tiger individuals is represented in Appendix 2 with the information about the matches between FRC and LL IDs.

Adult individuals were analyzed separately from cubs and a minimal number of captured adult individuals were calculated for different sex separately. Since some individuals were captured only from one side – only left or right side image is available for a tiger – the minimal number of individuals was calculated as number of individuals captured from both sides (LR) plus number of L- or R- individuals depending on which one is bigger (see table 4).

Using the above calculation method we revealed that at least 45 adult tiger individuals were registered both in Russia and in China during 2013-2015 period – 20 female, 15 male and 10 tigers of unknown sex. 19 tigers (42% from total number) were registered in both countries. Both females (8 individuals) and males (8 individuals) cross the border. At the same time in each country, there are animals which never crossed the border. There are 24 such tigers in Russia and 3 tigers in China.

This number does not represent the current number of individuals in the population since some of the tigers have been captured in 2013 or 2014 last time and were not seen on 2015. Calculation of individuals that were captured in 2015 results in 32 adult tigers (13 females, 10 males, 9 unknown sex) and 1 cub. 12 tigers (38 %) have been photographed in Russia and China.

|                                                | Total(adult only) | Female | Male | Unknown sex |
|------------------------------------------------|-------------------|--------|------|-------------|
| Totally in China<br>and Russia                 | 45                | 20     | 15   | 10          |
| in China                                       | 22                | 9      | 8    | 5           |
| in Russia                                      | 42                | 18     | 15   | 9           |
| Individuals<br>detected in<br>Russia and China | 19                | 8      | 8    | 3           |
| in China only                                  | 3                 | 1      | 0    | 2           |
| in Russia only                                 | 24                | 10     | 7    | 7           |

Table 4: Minimal number of adult tiger individuals captured by camera traps during2013-2015

During three-year investigation, 6 breeding females were captured on both territories (see table 5).

Totally 16 cubs of 6 females have been captured in Russia in the 2013-2015 period. 1 cub was captured in 2015 and only future data will show if it will become a new member of far eastern tiger population. The existing data confirms that at least 6 cubs from 12 cubs born in

Russia in 2014 used to move to China, and 3 cubs were born in China and just caught in China.

| Number of cubs | 2013 | 2014 | 2015 | Females with cubs    |
|----------------|------|------|------|----------------------|
| in Russia      | 0    | 12   | 1    | T1,T10(CT5), T7, T21 |
| in China       | 0    | 5    | 0    | CT3,CT18,CT5(T10)    |

Table 5: Reproductive Indexes of Amur Tiger Captured by Camer Traps

For each of the individuals photographed in both sides of international border several parameters of cross-boundary movements were calculated – number of encounters in each country, number of state boundary crossings, maximum distance moved from the border (see table 6).

| LL-ID FRC-ID | Number of encounters |             |              | % of encounters |             | Times<br>cross | Max distance<br>moved from the<br>state border |             |              |
|--------------|----------------------|-------------|--------------|-----------------|-------------|----------------|------------------------------------------------|-------------|--------------|
|              |                      | in<br>China | in<br>Russia | total           | in<br>China | in<br>Russia   | border                                         | in<br>China | in<br>Russia |
| T_7F         | CT1                  | 21          | 14           | 35              | 60          | 40             | 10                                             | 5           | 7.9          |
| T_3M         | CT2                  | 8           | 12           | 20              | 40          | 60             | 4                                              | 1.9         | 17           |
| T_12F        | CT3                  | 5           | 5            | 10              | 50          | 50             | 2                                              | 1.6         | 2.5          |
| T_11M        | CT4                  | 4           | 13           | 17              | 23.5        | 76.5           | 3                                              | 2.7         | 5.7          |
| T_10F        | CT5                  | 3           | 2            | 5               | 60          | 40             | 1                                              | 36.3        | 4.4          |
| T_4M         | CT7                  | 8           | 3            | 11              | 72.7        | 27.3           | 5                                              | 14.7        | 3.8          |
| T_8F         | CT8                  | 2           | 13           | 15              | 13.3        | 86.7           | 2                                              | 1.9         | 4.4          |
| T_26M        | CT10                 | 9           | 2            | 11              | 81.8        | 18.2           | 1                                              | 259.3       | 18.9         |
| T_29M        | CT11                 | 2           | 1            | 3               | 66.7        | 33.3           | 1                                              | 0.9         | 2.3          |
| T_31F        | CT12                 | 8           | 1            | 9               | 88.9        | 11.1           | 1                                              | 1.6         | 2.3          |
| T_33M        | CT13                 | 8           | 11           | 19              | 42.1        | 57.9           | 1                                              | 1.6         | 16.2         |
| T_32Un       | CT15                 | 1           | 1            | 2               | 50          | 50             | 1                                              | 0.7         | 4.4          |
| T_30F        | CT16                 | 18          | 6            | 24              | 75          | 25             | 3                                              | 2.9         | 3.9          |
| T_9F         | CT17                 | 2           | 7            | 9               | 22.2        | 77.8           | 1                                              | 4.8         | 4.4          |
| T_13F        | CT18                 | 1           | 8            | 9               | 11.1        | 88.9           | 2                                              | 0.3         | 4.1          |

Table 6: Cross-boundary movements of tiger individuals captured by camera traps

The analysis of cross-boundary movements shows that some tigers actively cross the border. They should be resident individuals having their home ranges both in Russia and in China. For example, CT1, CT2, CT7, CT16 had crossed the border at least 3 times during 2013 to 2014. Otherwise, there is a very clear trend of the dispersion of young individuals (even a breeding individual) from Russia to China, and in China tigers can move much further from the border than Russia. CT5 was caught with 4 cubs in Russia in the beginning of 2014, then she was caught in China with 2 cubs (CT21, CT24) in the end of 2014., and CT24 was caught later alone in China (39.7km from the border ). After it, CT5 was caught alone 2 times in China in 2015(36.3km from the border).T1(only in Russia) was caught with 4 cubs in Russia, but one of the cubs(CT26) was caught in China as an adult looking(30.6km near the border). CT10 was caught in March of 2014 in Russia first time, then it moved to the place of China 259.3km from the border and never back to Russia till 2015.Other tigers crossed the border only once, but among 11 individuals, 9 of them moved from Russia to China, and 2 tigers moved from China to Russia.

## 2. Molecular genetic analysis

#### 2.1. Research background

Researchers of Feline Research Center and "Land of the Leopard" National Park (LL) of the Russian Federation collected non-invasive samples (scat) from the field to identify individuals and their biological features including family tree and genetic conditions as well as their transborder movement. FRC collected samples during 2013-2015, LL during winter season 2015. The two institutes collected 207 and 193 suspected tiger and leopard feces samples. DNA extraction for laboratory test of sample collected in the Russian Federation was held by Institute of Biology and Soil Science (IBSS) of the Russian Academy of Science. Feline Research Center (FRC) of Chinese State Forestry Administration and Institute of Biology and Soil Science of Russian academy of science separately collected 207 and 135 suspected tiger and leopard feces samples during the year from 2013 to 2015. Marina Igorevna Chaika and Valentin Yurievich Guskov from Russia side were assigned to FRC of China to test the samples with Chinese experts, Meng Wang and Yao Ning.

#### 2.2. Research Method

#### 2.2.1. Sample collection

According to the principle of non-invasive sample collection, in winter, we found the feces along with the track where tigers and leopards haunt. And for guaranteeing the quality of DNA, the surface of samples should be avoided to be damaged when collection. There is one marked card in each sample bag, noted the geographic coordinate of collecting place, when the sample was collected and encode the sample. Put the packaged samples into the ice box filled with ice bag then store it in the fridge under -20°C. Extract samples from the ice box immediately after being transported to the local laboratory and then put them into refrigerator under -20°C until extracting DNA.

#### 2.2.2. DNA Extraction

DNA was extracted by QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). Carry on step by step according to the step of the operation instructions. For the samples with low quality, we will decrease TE buffer solution moderately in the last step.

The first step is to identify the species.

Specific primer for leopard: Ppo-CbF (5'-GTAAATTATGGCTGAATTATCCGG-3') Ppo-CbR (5'-CATAACCGTGAACAATAATACGAC-3')

Specific primer for tiger: Pta-CbF (5'-TTTGGCTCCTTACTAGGGGTG-3') Pta-CbR (5'-CCGTAAACAATAGCACAATCCCGATA-3')

Amplify DNA with spices specific primer with 3 replications. Then confirm the PCR produced by agarose gel electrophoresis and sequence analysis the fragments with the product.

In the winter of 2015, Marina, Yao Ning and Professor Jiang went to Shu-Lin Luo'lab in Peking University to discuss doing and anlysing of the microsatellite. 11 microsatellites locus were used to amplify the tiger and leopard DNA samples [1]. At first, samples were amplified with 3 replications. The sample is heterozygous when the same peak repeats at least twice, and the sample is homozygous when the same peak repeats at least for 3 times. Unknown samples were repeated at most for 10 times but there was still no significant result. Then identify the individuals by the software of biology like GENEMAPPER Allelogram and so on.

Then amplify the X and Y Chromosome fragments on samples with certificated genotype by the sex-specific primer of P1-5EZ (5' -ATA ATC ACA TGG AGA GCC ACA AGC T-3'), P2-3EZ (5' -GCA CTT CTT TGG TAT CTG AGA AAG T-3') and Y53-3E (5' -CGC ATT CAT TGT GTG GTC TCG TG-3'), Y53-3F (5' -CGA CGA GGT CGA TAT TTA TAG C-3'). The sample is from female if there is only one DNA band, and the sample is from male if there are two DNA bands. Firstly we amplified these samples with 3 replications. If it appears two bands at least twice, we assume it is male sample, if it appears one band for three times then we assume it is female sample.

#### 2.3. Result

#### 2.3.1. Result of tiger and leopard in China

FRC collected 104 suspected Amur leopard feces and 103 suspected Amur tiger feces during 2013 to 2015. According to the result of amplified the genetic samples collected from the field with specific primer, there are 78 samples come from Leopard (*Panthera pardus orientalis*) and 93 from Tiger (*Panthera tigris*) (see table 1).

After amplifying 171 samples with 11 microsatellite locus, 4 of 11 microsatellite locus were exempted in leopard samples amplification because they were not polymorphic or there was a low rate of amplification. 18 leopard samples were amplified successfully in all of 7 remaining locus. After classification and comparison the genotypes of these samples, 9 individuals were identified in 18 samples. 7 of 9 individuals were detected for once, 1 of 9 individuals was detected for 3 times and 1 were detected for 8 times. 1 of 11 microsatellite locus was exempted in tiger samples amplification because they were not polymorphic or there was a low rate of amplification. 24 tiger samples amplified successfully in all of 10

remaining locus. After classification and comparison the genotypes of these samples, 19 individuals were identified in 24 samples. 16 of 19 individuals were detected for once and 3 of 19 individuals were detected for 2 to 3 times.

After identifying the gender of these samples by sex-specific primer, it reveals that 1 was from the female, 7 were from the male and one were from the unknown in leopard samples and 1 was from the female, 15 was from the male and 3 was from the unknown in tiger samples.

#### Table 1: Minimal number of leopard individuals captured during 2013-2015 by DNA test in China

| species | Collected sample | Positive<br>samples | Selected<br>genotypes | Identified<br>individuals |
|---------|------------------|---------------------|-----------------------|---------------------------|
| leopard | 104              | 78                  | 18                    | 9                         |
| tiger   | 103              | 93                  | 24                    | 19                        |

#### 2.3.2. Result of tiger and leopard in Russia

Land of the Leopard collected 139 suspected Amur leopard and Amur tiger feces (29 for unknown) during 2013 to 2015. According to the result of amplified the genetic samples collected from the field with specific primer, there were 56 samples come from Leopard (*Panthera pardus orientalis*) and 65 from Tiger (*Panthera tigris*) (see table 2).

Amplifying 121 samples with 11 microsatellite locus: 24 samples of leopard samples amplified successfully in all of 7 remaining locus. After classification and comparison the genotypes of these samples, 16 individuals were identified in 24 samples. 11 of 16 individuals were detected for once and 5 of 16 individuals detected for 2 to 3 times. 24 samples of tiger samples were amplified successfully in all of 10 remaining locus. Then 12 individuals were identified in 24 samples. 7 of 12 individuals detected for once and 5 of 12 individuals detected for 2 to 4 times.

About identifying gender of these samples by sex-specific primer, it reveals that one for female, 15 for male in leopard samples and one for female, 11 for male in tiger samples.

| Spacios | Collecte | Positive | Selected  | Identified  |
|---------|----------|----------|-----------|-------------|
| Species | sample   | samples  | genotypes | individuals |
| leopard | 57       | 56       | 24        | 16          |
| Tiger   | 49       | 65       | 24        | 12          |

Table 2: Minimal number of leopard individuals captured in 2015 by DNA test in Russia

#### 2.3.3. Results of identity of the same individual

9 leopard individuals were identified from 18 Chinese samples and 16 leopards individuals were identified from 24 Russian samples, but only 2 individuals were detected both in China and Russia. 17 tiger individuals were identified from 24 Chinese samples and 12 tiger individuals identified from 24 Russian samples but no individual was detected both in China and Russia.

| Sample ID  | Individual ID<br>(*means for<br>the same<br>individual) | Time for collection | Located for collection           | Person for collection                                              |
|------------|---------------------------------------------------------|---------------------|----------------------------------|--------------------------------------------------------------------|
| <u>30</u>  | <u>1</u>                                                | <u>2013.5.8</u>     | <u>Lanjia</u><br>Wangqing        | <u>Jiang Guangshun</u><br><u>Li Zhilin Zhang</u><br><u>Hongjun</u> |
| <u>36</u>  | <u>2*</u>                                               | <u>2013.8.21</u>    | <u>Lanjia</u><br>Wangqing        | <u>Li Qi Cao Zhixin</u>                                            |
| <u>63</u>  | <u>2*</u>                                               | <u>2013.9.26</u>    | <u>Lanjia</u><br>Wangqing        | <u>Cao Zhixin</u>                                                  |
| <u>65</u>  | <u>3</u>                                                | <u>2013.10.26</u>   | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>66</u>  | <u>4</u>                                                | <u>2013.10.26</u>   | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>74</u>  | <u>2*</u>                                               | <u>2013.11.9</u>    | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>88</u>  | <u>5</u>                                                | 2014.3.30           | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>89</u>  | <u>6</u>                                                | <u>2014.3.31</u>    | <u>Lanjia</u><br>Wangqing        | <u>Cao Zhixin</u>                                                  |
| <u>94</u>  | <u>4</u>                                                | <u>2014.3.31</u>    | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>98</u>  | <u>2*</u>                                               | 2014.4.20           | <u>Lanjia</u><br><u>Wangqing</u> | <u>Cao Zhixin</u>                                                  |
| <u>99</u>  | <u>2*</u>                                               | 2014.4.18           | <u>Lanjia</u><br>Wangqing        | <u>Cao Zhixin Li Qi</u>                                            |
| <u>101</u> | <u>2*</u>                                               | <u>2014.4.19</u>    | <u>Lanjia</u><br>Wangqing        | <u>Cao Zhixin Mu</u><br><u>Yanjun</u>                              |
| <u>107</u> | <u>2*</u>                                               | <u>2012.12.13</u>   | <u>Lanjia</u><br>Wangqing        |                                                                    |
| <u>108</u> | <u>4</u>                                                | <u>2012.12.13</u>   | <u>Lanjia</u><br>Wangqing        |                                                                    |

Table 1: Amur leopards identified by DNA test in China

| <u>124</u> | <u>2*</u> | <u>2014.3.3</u>   | <u>Lanjia</u><br>Wangqing | <u>Cao Zhixin</u> |
|------------|-----------|-------------------|---------------------------|-------------------|
| <u>214</u> | <u>7*</u> | <u>2015.11.04</u> | <u>Hun Chun</u>           | <u>Cao Zhixin</u> |
| <u>215</u> | <u>8</u>  | <u>2015.11.04</u> | <u>52 Linban</u>          | <u>Cao Zhixin</u> |
| <u>218</u> | <u>9</u>  | <u>2015.11.04</u> | <u>HunChun</u>            | <u>Cao Zhixin</u> |

## Table 2: Amur tigers identified by DNA test in China

|            |                 | Time for          | Located for                              | People for                                |
|------------|-----------------|-------------------|------------------------------------------|-------------------------------------------|
| Sample ID  | Individual ID   | collection        | collection                               | collection                                |
| 2          | 1               | 2012 1 14         | Madida                                   | Zhu Jiang Sheng                           |
| <u>2</u>   | <u>1</u>        | <u>2012.1.14</u>  | <u>Hunchun</u>                           | <u>Ledong Li Min</u>                      |
|            |                 |                   | Huangsongdia                             | Lang Jianmin Gao                          |
| <u>4</u>   | <u>2</u>        | 2012.4.14         | nzi Hunchun                              | Wenbin Xue                                |
|            |                 |                   |                                          | Yangang                                   |
| 7          | 2               | 2012 12 19        | Sanguan                                  | Lang Jianmin Gu                           |
| Z          | <u>3</u>        | <u>2012.12.18</u> | <u>Hunchun</u>                           | <u>Jiayin Xue</u><br><u>Yangang</u>       |
|            |                 |                   |                                          | Lang Jianmin Gu                           |
| <u>8</u>   | <u>3</u>        | 2012.12.18        | Sanguan_                                 | Jiayin Xue                                |
| _          | _               |                   | <u>Hunchun</u>                           | Yangang                                   |
| 10         |                 |                   | Wulindong                                |                                           |
| <u>10</u>  | $\underline{4}$ | <u>2013.1</u>     | <u>Dongfanghon</u>                       | <u>Gao Kejiang</u>                        |
|            |                 |                   | g                                        |                                           |
| <u>11</u>  | <u>3</u>        | 2013.1.22         | <u>Naozhigou</u>                         |                                           |
|            | -               |                   | Hunchun                                  |                                           |
| <u>13</u>  | <u>5</u>        | 2013.1.30         | Xibeigou                                 | Lang Jianmin Gu                           |
|            |                 |                   | <u>Hunchun</u>                           | Jiayin Li Zhilin                          |
| <u>31</u>  | <u>6</u>        | 2013.5.24         | <u>Linghoushan</u><br><u>Songlinmiao</u> | <u>Lang Jianmin Xue</u><br><u>Yangang</u> |
| 46         |                 |                   | <u>Songininao</u>                        | Tangang                                   |
| 10         | <u>7</u>        | <u>2014.1.8</u>   | <u>Sidaogou</u>                          | <u>Li Dongwei</u>                         |
| 152        |                 |                   | Madida                                   |                                           |
|            | <u>8</u>        | <u>2015.1.26</u>  | Hunchun                                  |                                           |
| 155        | 0               | 2015 1 20         | Madida                                   |                                           |
| <u>155</u> | <u>9</u>        | <u>2015.1.29</u>  | <u>Hunchun</u>                           |                                           |
| <u>172</u> | <u>10</u>       | 2013.10.19        | Xibeigou                                 |                                           |
|            | 10              |                   | -                                        |                                           |
| <u>173</u> | <u>10</u>       | <u>2013.12.6</u>  | <u>Quliugou</u>                          |                                           |
|            |                 |                   | Madida                                   |                                           |

| <u>174</u> | <u>11</u> | <u>2012.4.8</u>   | <u>Quliugou</u><br><u>Madida</u>                                                    |                   |
|------------|-----------|-------------------|-------------------------------------------------------------------------------------|-------------------|
| <u>183</u> | <u>12</u> | <u>2011.12.18</u> | <u>Northwest of</u><br><u>Madida</u>                                                |                   |
| <u>228</u> | <u>13</u> | <u>2016.2.26</u>  | <u>Heshangouli</u>                                                                  | <u>Yang Eryan</u> |
| <u>226</u> | <u>14</u> | <u>2016.3.1</u>   | <u>Heshangouli</u>                                                                  | <u>Yang Eryan</u> |
| <u>159</u> | <u>15</u> | <u>2015.2.8</u>   | <u>Huangnihe</u>                                                                    |                   |
| 204        | <u>16</u> | <u>2015.12.24</u> | <u>Heping</u><br><u>Muling</u>                                                      | <u>Gu Jiayin</u>  |
| <u>205</u> | <u>17</u> | <u>2015.12.18</u> | <u>Huapi Frost</u><br><u>farm</u><br>Tianqiaoling<br>Administratio<br>n of Forestry |                   |
| <u>209</u> | <u>18</u> | <u>2015.12.22</u> | <u>Dahuanggou</u>                                                                   | Wu Guoqing        |
| 231        | <u>19</u> | <u>2016.3.2</u>   | <u>Shichang</u>                                                                     |                   |
| 232        | <u>19</u> | <u>2015.11.11</u> | <u>Malugou</u>                                                                      |                   |
| <u>233</u> | <u>19</u> | <u>2016.1.17</u>  | Yongpinggou                                                                         |                   |

#### Table 3: Amur leopards and Amur tigers identified by DNA test in Russia

| Tube | Sample ID (bold<br>type represented<br>for samples with<br>identified<br>genotypes) | type represented for common<br>for samples with identified between<br>genotypes) China and<br>Russia) |     | DNA<br>concentration | Date of<br>extraction | Tube<br>Vol.<br>(ml) |
|------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|----------------------|-----------------------|----------------------|
| 1    | 862                                                                                 | 6                                                                                                     | PPO | 17.18                | 02.07.2015            | 1.5                  |
| 2    | 863                                                                                 | 2                                                                                                     | PPO | 22.9                 | 17.06.2015            | 1.5                  |
| 3    | 864                                                                                 | 7                                                                                                     | PPO | 20.43                | 01.07.2015            | 1.5                  |
| 4    | 865                                                                                 |                                                                                                       | PPO | 23.08                | 15.06.2015            | 1.5                  |
| 5    | 866                                                                                 | 2                                                                                                     | PPO | 25.8                 | 25.06.2015            | 1.5                  |
| 6    | 867                                                                                 | 2                                                                                                     | PPO | 21.21                | 25.06.2015            | 1.5                  |
| 7    | 873                                                                                 | 8                                                                                                     | PPO | 22.78                | 25.06.2015            | 1.5                  |
| 8    | 880                                                                                 | 3                                                                                                     | PPO | 37.02                | 30.06.2015            | 1.5                  |
| 9    | 881                                                                                 |                                                                                                       | PPO | 46.92                | 30.06.2015            | 1.5                  |
| 10   | 884                                                                                 | 4                                                                                                     | PPO | 136.68               | 22.06.2015            | 1.5                  |
| 11   | 885                                                                                 |                                                                                                       | PTA | 29.8                 | 22.06.2015            | 1.5                  |
| 12   | 887                                                                                 | 9                                                                                                     | PPO | 25.27                | 11.06.2015            | 1.5                  |

| 13 | 893  | 4   | PPO     | 75.81  | 15.06.2015 | 1.5 |
|----|------|-----|---------|--------|------------|-----|
| 10 | 894  | 1   | PPO     | 34.55  | 26.06.2015 | 1.5 |
| 15 | 896  | 10  | PPO     | 52.44  | 30.06.2015 | 1.5 |
| 16 | 907  | 10  | PPO     | 15.57  | 02.07.2015 | 1.5 |
| 17 | 908  | 3   | PPO     | 28.49  | 09.06.2015 | 1.5 |
| 18 | 909  |     | PPO     | 41.4   | 30.06.2015 | 1.5 |
| 19 | 911  | 5   | PPO     | 22.57  | 30.06.2015 | 1.5 |
| 20 | 914  |     | PPO     | 23.56  | 19.06.2015 | 1.5 |
| 20 | 917  |     | PPO     | 103.04 | 15.06.2015 | 1.5 |
| 22 | 919  | 4   | PPO     | 37.43  | 25.06.2015 | 1.5 |
| 23 | 921  | -   | PPO     | 21.82  | 18.06.2015 | 1.5 |
| 24 | 922  |     | PPO     | 42.85  | 16.06.2015 | 1.5 |
| 25 | 923  | 11  | PPO     | 39.85  | 01.07.2015 | 1.5 |
| 26 | 928  | 5   | PPO     | 28.98  | 17.06.2015 | 1.5 |
| 27 | 930  |     | PPO     | 41.23  | 01.07.2015 | 1.5 |
| 28 | 940  |     | PPO     | 15.81  | 18.06.2015 | 1.5 |
| 29 | 942  |     | NEITHER | 61.1   | 02.07.2015 | 1.5 |
| 30 | 964  |     | NEITHER | 138.33 | 22.06.2015 | 1.5 |
| 31 | 983  | 12  | PPO     | 45.02  | 11.06.2015 | 1.5 |
| 32 | 986  |     | PPO     | 22.97  | 24.06.2015 | 1.5 |
| 33 | 987  |     | NEITHER | 93.13  | 17.06.2015 | 1.5 |
| 34 | 989  | 13  | PPO     | 40.48  | 11.06.2015 | 1.5 |
| 35 | 990  | 14  | PPO     | 69.42  | 02.07.2015 | 1.5 |
| 36 | 995  |     | PPO     | 45.1   | 15.06.2015 | 1.5 |
| 37 | 996  |     | PPO     | 20.72  | 30.06.2015 | 1.5 |
| 38 | 997  |     | PPO     | 23.07  | 16.06.2015 | 1.5 |
| 39 | 998  |     | PPO     | 36.65  | 26.06.2015 | 1.5 |
| 40 | 999  |     | NEITHER | 53.48  | 02.07.2015 | 1.5 |
| 41 | 1002 |     | NEITHER | 159.05 | 16.06.2015 | 1.5 |
| 42 | 1004 |     | PPO     | 25.55  | 01.07.2015 | 1.5 |
| 43 | 1005 |     | PPO     | 87.08  | 08.06.2015 | 1.5 |
| 44 | 1009 |     | PPO     | 35.89  | 15.06.2015 | 1.5 |
| 45 | 1010 | 1*  | PPO     | 59.05  | 25.06.2015 | 1.5 |
| 46 | 1012 |     | PPO     | 25.49  | 25.06.2015 | 1.5 |
| 47 | 1013 |     | NEITHER | 67.37  | 26.06.2015 | 1.5 |
| 48 | 1014 |     | NEITHER | 69.45  | 23.06.2015 | 1.5 |
| 49 | 1015 | 1   | PPO     | 16.78  | 02.07.2015 | 1.5 |
| 50 | 1016 |     | PPO     | 58.37  | 09.06.2015 | 1.5 |
| 51 | 1022 |     | PPO     | 51.5   | 09.06.2015 | 1.5 |
| 52 | 1026 | 1   | NEITHER | 169.29 | 30.06.2015 | 1.5 |
| 53 | 1027 | 1*  | PPO     | 67.33  | 19.06.2015 | 1.5 |
| 54 | 1028 | 15* | PPO     | 43.31  | 01.07.2015 | 1.5 |
| 55 | 1032 |     | PPO     | 60.17  | 15.06.2015 | 1.5 |
| 56 | 1040 | 1   | PPO     | 30.25  | 02.07.2015 | 1.5 |
| 57 | 1050 | 1   | PPO     | 54.02  | 02.07.2015 | 1.5 |

| 58  | 861  |    | NEITHER | 159.11 | 15.06.2015 | 1.5 |
|-----|------|----|---------|--------|------------|-----|
| 59  | 870  |    | РТА     | 49.12  | 02.07.2015 | 1.5 |
| 60  | 871  |    | РТА     | 54.25  | 30.06.2015 | 1.5 |
| 61  | 875  |    | РТА     | 64.73  | 30.06.2015 | 1.5 |
| 62  | 876  |    | PTA     | 20.73  | 17.06.2015 | 1.5 |
| 63  | 877  |    | PTA     | 17.39  | 30.06.2015 | 1.5 |
| 64  | 888  |    | РТА     | 31.41  | 18.06.2015 | 1.5 |
| 65  | 890  |    | NEITHER | 133.21 | 30.06.2015 | 1.5 |
| 66  | 892  |    | РТА     | 23.69  | 24.06.2015 | 1.5 |
| 67  | 900  |    | РТА     | 224.2  | 15.06.2015 | 1.5 |
| 68  | 903  |    | РТА     | 23.22  | 26.06.2015 | 1.5 |
| 69  | 904  | 3  | РТА     | 38.14  | 01.07.2015 | 1.5 |
| 70  | 918  | 2  | РТА     | 47.5   | 25.06.2015 | 1.5 |
| 71  | 920  | 2  | РТА     | 123.62 | 30.06.2015 | 1.5 |
| 72  | 924  |    | РТА     | 36.8   | 15.06.2015 | 1.5 |
| 73  | 931  |    | РТА     | 38.06  | 26.06.2015 | 1.5 |
| 74  | 933  |    | PTA     | 356.24 | 15.06.2015 | 1.5 |
| 75  | 936  | 4  | PTA     | 23.54  | 22.06.2015 | 1.5 |
| 76  | 945  |    | NEITHER | 127.65 | 25.06.2015 | 1.5 |
| 77  | 952  | 8  | PTA     | 29.19  | 23.06.2015 | 1.5 |
| 78  | 953  | 7  | PTA     | 15.55  | 15.06.2015 | 1.5 |
| 79  | 954  |    | PPO     | 139.95 | 24.06.2015 | 1.5 |
| 80  | 955  | 3  | PTA     | 313.63 | 15.06.2015 | 1.5 |
| 81  | 956  | 9  | PTA     | 80.65  | 09.06.2015 | 1.5 |
| 82  | 959  |    | PTA     | 20.96  | 02.07.2015 | 1.5 |
| 83  | 961  |    | PTA     | 38.17  | 22.06.2015 | 1.5 |
| 84  | 962  |    | PTA     | 58.94  | 23.06.2015 | 1.5 |
| 85  | 966  |    | PTA     | 17.93  | 22.06.2015 | 1.5 |
| 86  | 969  | 5  | PTA     | 34.13  | 25.06.2015 | 1.5 |
| 87  | 972  | 7  | PTA     | 25.38  | 24.06.2015 | 1.5 |
| 88  | 973  | 5  | PTA     | 15.58  | 30.06.2015 | 1.5 |
| 89  | 974  | 10 | PTA     | 45.85  | 24.06.2015 | 1.5 |
| 90  | 975  |    | PTA     | 18.88  | 25.06.2015 | 1.5 |
| 91  | 976  |    | PTA     | 104.68 | 15.06.2015 | 1.5 |
| 92  | 980  |    | PTA     | 15.43  | 19.06.2015 | 1.5 |
| 93  | 982  | 11 | PTA     | 19.48  | 24.06.2015 | 1.5 |
| 94  | 984  |    | PTA     | 32.81  | 01.07.2015 | 1.5 |
| 95  | 985  |    | NEITHER | 222.45 | 26.06.2015 | 1.5 |
| 96  | 993  |    | NEITHER | 190.38 | 24.06.2015 | 1.5 |
| 97  | 1000 |    | РТА     | 26.99  | 18.06.2015 | 1.5 |
| 98  | 1019 | 2  | РТА     | 35.82  | 22.06.2015 | 1.5 |
| 99  | 1021 |    | РТА     | 21.1   | 09.06.2015 | 1.5 |
| 100 | 1023 |    | PTA     | 32.36  | 25.06.2015 | 1.5 |
| 101 | 1025 | 2  | РТА     | 15.51  | 15.06.2015 | 1.5 |
| 102 | 1029 |    | PTA     | 32.96  | 25.06.2015 | 1.5 |

| 103 | 1034 |    | PTA     | 62.04  | 17.06.2015 | 1.5 |
|-----|------|----|---------|--------|------------|-----|
| 104 | 1037 |    | PTA     | 36.96  | 01.07.2015 | 1.5 |
| 105 | 1048 |    | РТА     | 16.78  | 22.06.2015 | 1.5 |
| 106 | 1051 |    | NEITHER | 72.6   | 30.06.2015 | 1.5 |
| 107 | 899  |    | PPO     | 38.85  | 30.06.2015 | 1.5 |
| 108 | 901  |    | PTA     | 18.93  | 19.06.2015 | 1.5 |
| 109 | 906  |    | PTA     | 24.43  | 09.06.2015 | 1.5 |
| 110 | 910  |    | PTA     | 32.39  | 24.06.2015 | 1.5 |
| 111 | 912  |    | PPO     | 40.81  | 24.06.2015 | 1.5 |
| 112 | 913  |    | PPO     | 202.91 | 09.06.2015 | 1.5 |
| 113 | 932  | 3  | PTA     | 27.4   | 19.06.2015 | 1.5 |
| 114 | 934  |    | PTA     | 59.58  | 26.06.2015 | 1.5 |
| 115 | 935  | 4  | PTA     | 19.85  | 17.06.2015 | 1.5 |
| 116 | 937  |    | PTA     | 75.47  | 18.06.2015 | 1.5 |
| 117 | 938  |    | PTA     | 26.04  | 30.06.2015 | 1.5 |
| 118 | 939  |    | PTA     | 24.7   | 02.07.2015 | 1.5 |
| 119 | 943  | 3  | PPO     | 21.81  | 19.06.2015 | 1.5 |
| 120 | 944  | 6  | PTA     | 38.84  | 18.06.2015 | 1.5 |
| 121 | 946  |    | PTA     | 26.72  | 02.07.2015 | 1.5 |
| 122 | 947  | 4  | PTA     | 22.85  | 25.06.2015 | 1.5 |
| 123 | 948  | 1  | PTA     | 15.26  | 16.06.2015 | 1.5 |
| 124 | 957  |    | PTA     | 29.58  | 02.07.2015 | 1.5 |
| 125 | 958  |    | PTA     | 89.11  | 22.06.2015 | 1.5 |
| 126 | 967  | 4  | PTA     | 28.01  | 23.06.2015 | 1.5 |
| 127 | 1001 | 1  | PTA     | 48.89  | 15.06.2015 | 1.5 |
| 128 | 1008 | 6  | PTA     | 16.75  | 11.06.2015 | 1.5 |
| 129 | 1024 | 12 | PTA     | 50.7   | 26.06.2015 | 1.5 |
| 130 | 1043 |    | PPO     | 37.86  | 18.06.2015 | 1.5 |
| 131 | 1045 |    | PTA     | 15.23  | 02.07.2015 | 1.5 |
| 132 | 1046 |    | PPO     | 50.25  | 02.07.2015 | 1.5 |
| 133 | 1047 |    | PPO     | 28.3   | 17.06.2015 | 1.5 |
| 134 | 1052 |    | PTA     | 23.17  | 16.06.2015 | 1.5 |
| 135 | 1053 | 16 | PPO     | 27.66  | 22.06.2015 | 1.5 |

#### 3. Discussion

The main reasons for the difference between camera trap data and genetic data are: 1. the area and distance to the border where the samples took are unknown because Russian side didn't provide the geographic coordinates to us. 2. Because of the quality of samples, DNA quality did not good enough for amplification. Only 28.8% and 42.9% of the leopard samples of Chinese and Russian amplified successfully, and 25.8% and 36.9% of the tiger. 3. To ensure the accuracy of the result, strict principles were used for data analysis. For example, we wiped off samples because they were not polymorphic or there was a low rate

of amplification, only the samples which were amplified the entire locus successfully would be used for analysis, and only the samples which all of the locus be the same would be identified as the same individual.

There are 12 tigers and 16 leopards identified from Russian samples, one leopard of them identified as the same individual with Chinese samples, while the camera trap 19 Amur tigers and 15 Amur leopards. At the same time, it is uncertain that if the sample area is adequate, if it is close enough to the border. So we can't reach the goal to analysis the spatial distribution across the border of China and Russia by DNA data.

Conservation of the Amur tiger and Amur Leopard populations can only be assured by implementing a set of activities that are aimed at conserving the animal itself, protecting its habitat and protecting the animals that make up its food source. These activities must take into account the special biological features of the subspecies' boreal existence as well as the lessons learnt from past years.

There are two main tasks necessary for conserving these populations. These are removing the causes of the decline in population number and minimizing the negative impacts that lead to the contraction and degradation of those habitats that are suitable for these carnivores. It is in these two areas where priority activities must be focused.

#### 3.1 Developing international collaboration

Although the Russian Federation presently carries the main responsibility for the conservation of the Amur tiger and Amur leopard in the wild, the future of these two sub-species also depends on the status and condition of populations and its habitat in neighbouring countries, specifically China and North Korea. Small populations of these cats in border areas of China are apparently supplemented by individuals who cross over from Russia. Appearances of tigers and leopards in the northern parts of North Korea have also been recorded. Without uniting the efforts of neighbouring countries, it is not possible to assess the level of habitat degradation and the potential for restoring the Amur tiger's and leopard's natural range. It is also not possible to determine a size for the entire populations that can be sustained in the wild. Uniting global efforts will help foster the exchange of information and ideas and increase the possibility of being able to conserve not only the subspecies but also the entire tiger species.

The necessity of enhancing international collaboration in conserving and studying the Amur tiger and leopard is governed by a number of factors, first and foremost of which is the trans-boundary nature of human-related impacts.

Inter-state cooperation, both within the region and beyond, is worthwhile developing in the following directions:

- Participation in the Global Tiger Initiative which was announced by the World Bank provides a platform for international collaboration. Coordinated planning of activities in tiger conservation is a task that requires concentrating the efforts of all tiger range countries. The main objectives of the Global Tiger Initiative are:
  - to increase the effectiveness of conservation activities through the exchange of experience and information
  - to improve the enforcement of conservation law through exchanging experience and international cooperation in combating the illegal cross-border trade in products derived from rare and endangered animals species
  - to decrease the demand for tiger products by *inter alia* conducting public awareness campaigns amongst consumers in those countries where tiger products are being used in traditional medicine and where there is also a demand for tiger skins
  - to raise the effectiveness of tiger habitat protection
  - to develop incentives for supporting tiger conservation at the local level
  - to develop and improve innovative mechanisms for funding tiger conservation activities, eg. developing mechanisms for joint funding of conservation projects by using carbon credits to compensate for carbon retention, or by paying for environmental services.
- Establishment of international transboundary protected areas for the conservation of the Amur tiger and the Amur leopard.
- Coordination of activities to stop the illegal export and trade of products that are derived from the illicit hunting of tigers and other rare animals. Of special importance is the collaboration with China. On a local level, it is worthwhile for the customs services of the Russian Federation and neighbouring provinces in China to work together and exchange information on the cross-border movement of illegal animal products. It is also worthwhile for the respective state institutions to exchange information on illegal international trading routes in both countries.
- Coordination of research programs and cooperation between Amur tiger and leopard experts from different countries. Of special importance is the development of a joint methodology for monitoring Amur tigers and leopards in Russia and China. This will enable study results from both countries to be properly compared.
- Continuation of collaboration in the management of captive Amur tiger and leopard populations within the EEP, European Association of Zoos and Aquaria (EAZA) and the North American Tiger SSP of the AZA.

It is important to collaborate with international non-government conservation organisations, charitable foundations and other non-government bodies. Such collaboration helps to raise additional funding, exchange ideas, draw on best international experience and undertake joint work between Russian and foreign experts in the fields of conservation and research within the entire range of the Amur tiger and Amur leopard.

#### 4. Conclusions

According to the results of this project, we can get main conclusions as followings:

- Camera trap monitoring is better than genetic check at understanding the cross border movement of Amur tigers and leopards which showed that 17% of all captured in Russia and China during 2013 to 2015 individuals of Amur leopards, and 42 % of Amur tigers were captured in both countries in this study. And the high density of Amur tigers and leopards in this area caused a strong requirement for diffusing out of the core area of Sino-Russia border areas for this small tiger and leopard population.
- Sino-Russian border fence or other human disturbance between the Land of Leopard National Park and Chinese Changbaishan is not a serious obstacle for the population of Amur tigers and leopards' movement. In this area, two countries' tiger and leopard is one population. However, it is still possible that Amur tigers and leopards just can use several import corridors where the border fences may be broken, which need further investigation.
- The study need detailed coordinate points of all the samples shared to determine specific corridors within the Sino-Russian border of Amur tigers and leopards' movement much clearer.
- For Amur tigers, it is urgent to conduct further research on the potential connection between this small population in Changbaishan mountain and the big population in Sikhote-Alin mountain to avoid the small population collapse because of disease risk of the small population.
- Because of much lower population number, Amur leopard conservation should be paid more attention to, and especially focus on expanding its habitat with weak competition capability with tigers.
- Because of frequent transborder movement of these Amur tiger and leopard populations, continuous Sino-Russia united monitoring is still needed well developed for efficient conservation monitoring after this project.

• More detailed genetic check with more samples is also needed to estimate the genetic diversity of these populations across the two countries, especially for exchange information of tigers across Sihote-Aline and Wandashan tiger population for next international tiger conservation work, then providing information for international ecological corridors across Sihot-Aline and Wandashan tiger population.

## Appendix 1

## Joint catalog of Amur leopard individuals captured by camera traps in Russia and China during 2013-2015

| Nº | ID-L<br>L* | ID-F<br>RC*              | Sex | Captured<br>in 2013 | Captured<br>in 2014 | Captured<br>in 2015 | Side | Adult/<br>Cub | The year<br>when an<br>individuals<br>was<br>captured as<br>a cub | Notes                                             |
|----|------------|--------------------------|-----|---------------------|---------------------|---------------------|------|---------------|-------------------------------------------------------------------|---------------------------------------------------|
| 1  | Leo<br>52M | Leo 1                    | М   | Υ                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |
| 2  | -          | Leo 2                    | М   | Y                   | Y                   | Ν                   | LR   | adult         |                                                                   |                                                   |
| 3  | Leo<br>29M | Leo 3                    | М   | Y                   | Y                   | Ν                   | LR   | adult         |                                                                   |                                                   |
| 4  | -          | Leo 4                    | F   | Y                   | Y                   | N                   | LR   | adult         |                                                                   |                                                   |
| 5  | -          | Leo 6                    | UN  | Y                   | Ν                   | Ν                   | R    | adult         |                                                                   |                                                   |
| 6  | Leo<br>49F | Leo 7                    | F   | Ν                   | Y                   | Ν                   | LR   | adult         |                                                                   |                                                   |
| 7  | -          | Leo 8                    | UN  | Y                   | Y                   | Ν                   | LR   | cub           | cub in 2013<br>and 2014                                           | cub of<br>Leo 4                                   |
| 8  | -          | Leo 9<br>=<br>leo18      | UN  | Y                   | Y                   | Y                   | LR   | adult         | cub in 2013<br>and 2014                                           | cub of<br>Leo 4                                   |
| 9  | Leo<br>9F  | Leo<br>10                | F   | Y                   | Y                   | Ν                   | LR   | adult         | cub in 2013                                                       | cub of<br>Leo 7F                                  |
| 10 | Leo<br>63F | Leo<br>11                | F   | Y                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |
| 11 | Leo<br>91M | Leo<br>12                | М   | Y                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |
| 12 | Leo<br>89F | Leo<br>14                | F   | Y                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |
| 13 | -          | Leo<br>15                | М   | Ν                   | Ν                   | N                   | L    | adult         |                                                                   | Excluded<br>from the<br>analysis<br>2013-<br>2015 |
| 14 | -          | Leo<br>16 =<br>leo<br>19 | М   | Y                   | Ν                   | N                   | R    | adult         |                                                                   |                                                   |
| 15 | Leo<br>26F | Leo<br>17                | F   | Y                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |
| 16 | -          | Leo<br>20                | UN  | Ν                   | Ν                   | Y                   | R    | adult         |                                                                   |                                                   |
| 17 | Leo<br>24M | Leo<br>21                | М   | Y                   | Y                   | Ν                   | LR   | adult         |                                                                   |                                                   |
| 18 | Leo<br>54F | Leo<br>22                | F   | Y                   | Y                   | N                   | LR   | adult         |                                                                   |                                                   |
| 19 | -          | Leo<br>23                | М   | Ν                   | Ν                   | Y                   | R    | adult         |                                                                   |                                                   |
| 20 | Leo<br>25M | Leo<br>24                | М   | Y                   | Y                   | Y                   | LR   | adult         |                                                                   |                                                   |

| 21 | Leo<br>22M  | Leo<br>25 | М  | Y | Y | Y | LR | adult |                      |                                              |
|----|-------------|-----------|----|---|---|---|----|-------|----------------------|----------------------------------------------|
| 22 | Leo<br>7F   | Leo<br>26 | F  | Y | Y | Y | LR | adult |                      |                                              |
| 23 | Leo<br>13F  | Leo<br>27 | F  | Y | Y | Ŷ | LR | adult |                      |                                              |
| 24 | -           | Leo<br>28 | UN | Ν | Ν | Ŷ | R  | adult |                      |                                              |
| 25 | Leo<br>81Un | Leo<br>29 | UN | Ν | Y | Y | LR | adult | cub in 2014          | Mother<br>unknown                            |
| 26 | Leo<br>1F   | -         | F  | Y | Y | N | LR | adult |                      |                                              |
| 27 | Leo<br>2M   | -         | М  | Y | Y | Ν | LR | cub   | cub in 2013,<br>2014 | cub of<br>Leo 1F                             |
| 28 | Leo<br>3M   | -         | М  | Y | Y | Ν | LR | adult | cub in 2013,<br>2014 | cub of<br>Leo 1F                             |
| 29 | Leo<br>4F   | -         | F  | Y | Y | Y | LR | adult | cub in 2013,<br>2014 | cub of<br>Leo 1F                             |
| 30 | Leo<br>5F   | -         | F  | Y | Y | Y | LR | adult |                      |                                              |
| 31 | Leo<br>6Un  | -         | UN | Y | Ν | Ν | LR | cub   | cub in 2013          | cub of<br>Leo 5F                             |
| 32 | Leo<br>8F   | -         | F  | Y | Y | Y | LR | adult | cub in 2013          | cub of<br>Leo 7F                             |
| 33 | Leo<br>10M  | -         | М  | Y | Y | Y | LR | adult |                      |                                              |
| 34 | Leo<br>11M  | -         | М  | Y | Y | Y | LR | adult |                      | Died in<br>car<br>accident<br>in Oct<br>2015 |
| 35 | Leo<br>12M  | -         | М  | Y | Y | Y | LR | adult |                      |                                              |
| 36 | Leo<br>14M  | -         | М  | Y | Y | Y | LR | adult |                      |                                              |
| 37 | Leo<br>15M  | -         | М  | Y | Y | Y | LR | adult |                      |                                              |
| 38 | Leo<br>16F  | -         | F  | Y | Y | Y | LR | adult |                      |                                              |
| 39 | Leo<br>17F  | -         | F  | Y | Y | Ν | LR | adult |                      |                                              |
| 40 | Leo<br>18M  | -         | М  | Y | Y | Ν | LR | adult |                      |                                              |
| 41 | Leo<br>19M  | -         | М  | Y | Y | Ν | LR | adult |                      |                                              |
| 42 | Leo<br>20M  | -         | М  | Y | Y | N | LR | adult |                      |                                              |
| 43 | Leo<br>21Un | -         | UN | Y | Y | Y | LR | adult |                      |                                              |
| 44 | Leo<br>23F  | -         | F  | Y | Y | Y | LR | adult |                      |                                              |
| 45 | Leo<br>27F  | -         | F  | Y | Y | Y | LR | adult |                      |                                              |
| 46 | Leo         | -         | М  | Y | Y | Ν | LR | adult |                      |                                              |

|    | 28M         |   |    |   |   |   |    |       |  |
|----|-------------|---|----|---|---|---|----|-------|--|
| 47 | Leo<br>30M  | - | М  | Y | Y | Y | LR | adult |  |
| 48 | Leo<br>31F  | - | F  | Y | Y | Ν | LR | adult |  |
| 49 | Leo<br>32M  | - | М  | Y | Y | Y | LR | adult |  |
| 50 | Leo<br>33F  | - | F  | Y | Y | Ν | LR | adult |  |
| 51 | Leo<br>34M  | - | М  | Y | Y | Y | LR | adult |  |
| 52 | Leo<br>35M  | - | М  | Y | Y | Y | LR | adult |  |
| 53 | Leo<br>36M  | - | М  | Y | Y | Y | LR | adult |  |
| 54 | Leo<br>37F  | - | F  | Y | Y | Ν | LR | adult |  |
| 55 | Leo<br>38F  | - | F  | Y | Y | Y | LR | adult |  |
| 56 | Leo<br>39F  | - | F  | Y | Y | Y | LR | adult |  |
| 57 | Leo<br>40M  | - | М  | Y | Ν | Ν | R  | adult |  |
| 58 | Leo<br>41F  | - | F  | Y | Y | Y | LR | adult |  |
| 59 | Leo<br>42M  | - | М  | Y | Y | Y | LR | adult |  |
| 60 | Leo<br>43M  | - | М  | Y | Y | Ν | LR | adult |  |
| 61 | Leo<br>44F  | - | F  | Ν | Y | Y | LR | adult |  |
| 62 | Leo<br>45F  | - | F  | Y | Y | Y | LR | adult |  |
| 63 | Leo<br>46M  | - | М  | Ν | Y | Y | LR | adult |  |
| 64 | Leo<br>48F  | - | F  | Ν | Y | Ν | LR | adult |  |
| 65 | Leo<br>50F  | - | F  | Y | Y | Y | LR | adult |  |
| 66 | Leo<br>55F  | - | F  | Ν | Y | Y | LR | adult |  |
| 67 | Leo<br>56F  | - | F  | Y | Y | Y | LR | adult |  |
| 68 | Leo<br>57Un | - | UN | Ν | Y | Ν | LR | adult |  |
| 69 | Leo<br>58F  | - | F  | Ν | Y | Y | LR | adult |  |
| 70 | Leo<br>59M  | - | М  | Ν | Y | Y | LR | adult |  |
| 71 | Leo<br>64M  | - | М  | Ν | Y | Y | LR | adult |  |
| 72 | Leo<br>65M  | - | М  | Ν | Y | Y | LR | adult |  |
| 73 | Leo         | - | F  | Ν | Y | Ν | LR | adult |  |

|    | 66F                   |   |    |   |   |   |    |       |             |                     |
|----|-----------------------|---|----|---|---|---|----|-------|-------------|---------------------|
| 74 | Leo<br>67Un           | - | UN | Ν | Y | Ν | R  | cub   | cub in 2014 | cub of<br>Leo 66F   |
| 75 | Leo<br>68M            | - | М  | Ν | Y | Ν | LR | adult |             |                     |
| 76 | Leo<br>69F            | - | F  | Y | Y | Y | LR | adult |             |                     |
| 77 | Leo<br>70F            | - | F  | Y | N | Ν | LR | adult |             |                     |
| 78 | Leo<br>72Un           | - | UN | Ν | Y | Ν | LR | adult |             |                     |
| 79 | Leo<br>73F            | - | F  | Y | Ν | Y | LR | adult |             |                     |
| 80 | Leo<br>74F            | - | F  | Y | Y | Y | LR | adult |             |                     |
| 81 | Leo<br>75F            | - | F  | Y | Y | Y | LR | adult |             |                     |
| 82 | Leo<br>76M            | - | М  | Ν | Y | Y | LR | adult |             |                     |
| 83 | Leo<br>77M            | - | М  | Ν | Y | Ν | R  | adult |             |                     |
| 84 | Leo<br>78Un           | - | UN | Ν | Y | Ν | L  | adult |             |                     |
| 85 | Leo<br>79F            | - | F  | Ν | Y | Y | LR | adult |             |                     |
| 86 | Leo<br>80M            | - | М  | Ν | Y | Y | LR | adult |             |                     |
| 87 | Leo<br>82Un           | - | UN | Ν | Y | Y | LR | adult |             |                     |
| 88 | Leo<br>84Un           | - | UN | Ν | Y | Ν | LR | cub   | cub in 2014 | cub of<br>Leo 55F   |
| 89 | Leo<br>85Un           | - | UN | Ν | Y | Ν | L  | cub   | cub in 2014 | cub of<br>Leo 55F   |
| 90 | Leo<br>87M            | - | М  | Ν | Y | Ν | LR | adult |             |                     |
| 91 | Leo<br>88Un           | - | UN | Ν | Y | Y | LR | adult |             |                     |
| 92 | cub 2<br>ofLeo<br>89F | - | UN | Ν | Y | Ν | R  | cub   | cub in 2014 | cub of<br>Leo 89F   |
| 93 | Leo<br>90Un           | - | UN | Ν | Ν | Y | LR | adult |             |                     |
| 94 | Leo<br>92F            | - | F  | Ν | N | Y | LR | adult | cub in 2014 | cub 1 of<br>Leo 89F |
| 95 | Leo<br>93F            | - | F  | Ν | N | Y | R  | adult |             |                     |
| 96 | Leo<br>94F            | - | F  | Ν | Ν | Y | LR | adult |             |                     |
| 97 | Leo<br>96Un           | - | UN | Ν | N | Y | L  | adult |             |                     |
| 98 | Leo<br>97Un           | - | UN | Ν | Ν | Y | R  | adult |             |                     |
| 99 | cub 1                 | - | UN | Ν | Ν | Y | LR | cub   | cub in 2015 | cub of              |

|         | ofLeo<br>39F          |   |    |   |   |   |    |     |             | Leo 39            |
|---------|-----------------------|---|----|---|---|---|----|-----|-------------|-------------------|
| 10<br>0 | cub 2<br>ofLeo<br>39F | - | UN | N | N | Y | LR | cub | cub in 2015 | cub of<br>Leo 39  |
| 10<br>1 | cub 1<br>ofLeo<br>16F | - | UN | N | N | Y | L  | cub | cub in 2015 | cub of<br>Leo 16F |
| 10<br>2 | cub 2<br>ofLeo<br>16F | - | UN | Ν | Ν | Y | L  | cub | cub in 2015 | cub of<br>Leo 16F |
| 10<br>3 | cub 3<br>ofLeo<br>16F | - | UN | Ν | Ν | Y | L  | cub | cub in 2015 | cub of<br>Leo 16F |
| 10<br>4 | cub 1<br>ofLeo<br>23F | - | UN | Ν | Ν | Y | L  | cub | cub in 2015 | cub of<br>Leo 23F |
| 10<br>5 | cub 2<br>ofLeo<br>23F | - | UN | Ν | Ν | Y | L  | cub | cub in 2015 | cub of<br>Leo 23F |

ID-LL - unique number of leopard individual in the database of Land of the Leopard

ID-FRC – unique number of leopard individual in the database of Feline Research Center

F – Female

M – Male

UN - Unknown Y - yes N - no

L – left

R – right

## Appendix 2

## Joint catalog of Amur tiger individuals captured by camera traps in Russia and China during 2013-2015

|    | ID-LL* | ID-FR<br>C* |    | Captured<br>in 2013 | Captured<br>in 2014 | Captured<br>in 2015 | Side |       | The year<br>when an<br>individuals<br>was captured<br>as a cub | Notes           |
|----|--------|-------------|----|---------------------|---------------------|---------------------|------|-------|----------------------------------------------------------------|-----------------|
| 1  | T_1    | -           | F  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 2  | T_2    | -           | F  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 3  | T_3    | CT 2        | М  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 4  | T_4    | CT 7        | М  | Y                   | N                   | N                   | LR   | adult |                                                                |                 |
| 5  | T_5    | -           | М  | Y                   | Y                   | NO                  | LR   | adult | died in 2014                                                   |                 |
| 6  | T_7    | CT 1        | F  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 7  | T_8    | CT 8        | F  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 8  | T_9    | CT 17       | F  | Y                   | Y                   | Ν                   | LR   | adult |                                                                |                 |
| 9  | T_10   | CT 5        | F  | N                   | Y                   | Ν                   | LR   | adult |                                                                |                 |
| 10 | T_11   | CT 4        | М  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 11 | T_12   | CT 3        | F  | Y                   | Y                   | Ν                   | LR   | adult |                                                                |                 |
| 12 | T_13   | CT 18       | F  | Y                   | Y                   | Ν                   | LR   | adult |                                                                |                 |
| 13 | T_14   | -           | F  | Ν                   | Ν                   | Y                   | R    | adult |                                                                |                 |
| 14 | T_16   | -           | М  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 15 | T_17   | -           | F  | Y                   | Ν                   | Ν                   | LR   | adult |                                                                |                 |
| 16 | T_18   | -           | М  | Y                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 17 | T_19   | -           | UN | Y                   | N                   | Y                   | LR   | adult |                                                                |                 |
| 18 | T_20   | -           | F  | Y                   | Ν                   | Ν                   | LR   | adult |                                                                |                 |
| 19 | T_21   | -           | F  | Ν                   | Y                   | Y                   | LR   | adult |                                                                |                 |
| 20 | T_22   | -           | UN | Ν                   | Ν                   | Y                   | LR   | cub   | cub in 2015                                                    | cub of<br>T_21F |
| 21 | T_23   | -           | F  | Ν                   | Y                   | Y                   | LR   | adult |                                                                |                 |

| 22 | T_25            | -     | F  | Ν | Y | Y | LR | adult |             |                |
|----|-----------------|-------|----|---|---|---|----|-------|-------------|----------------|
| 23 | T_26            | CT 10 | М  | N | Y | Ν | LR | adult |             |                |
| 24 | T_27            | -     | М  | N | Y | Y | LR | adult |             |                |
| 25 | T_29            | CT 11 | М  | N | Y | Ν | LR | adult | cub in 2014 | cub of<br>T_7F |
| 26 | T_30            | CT 16 | F  | N | Y | Y | LR | adult | cub in 2014 | cub of<br>T_7F |
| 27 | T_31            | CT 12 | F  | N | Y | Y | LR | adult | cub in 2014 | cub of<br>T_7F |
| 28 | T_32            | CT 15 | М  | Ν | Y | Y | LR | adult |             |                |
| 29 | T_33            | CT 13 | М  | Y | Y | Y | LR | adult |             |                |
| 30 | T_34            | -     | UN | Ν | Y | Ν | L  | adult |             |                |
| 31 | T_35            | -     | М  | Ν | Y | Ν | LR | adult |             |                |
| 32 | T_36            | -     | UN | Ν | N | Y | LR | adult |             |                |
| 33 | T_37            | -     | Fe | N | Ν | Y | LR | adult |             |                |
| 34 | T_38            | -     | М  | N | N | Y | LR | adult |             |                |
| 35 | T_39            | -     | М  | N | N | Y | LR | adult |             |                |
| 36 | T_40            | -     | F  | N | N | Y | LR | adult |             |                |
| 37 | T_41            | -     | F  | N | N | Y | LR | adult |             |                |
| 38 | T_42            | -     | UN | N | N | Y | LR | adult |             |                |
| 39 | T_43            | CT 23 | М  | N | N | Y | LR | adult |             |                |
| 40 | T_44            | -     | UN | N | Ν | Y | R  | adult |             |                |
| 41 | T_47            | -     | UN | N | N | Y | L  | adult |             |                |
| 42 | T_48            | -     | UN | N | N | Y | L  | adult | cub in 2014 |                |
| 43 | T_49            | CT 28 | UN | N | N | Y | LR | adult |             |                |
| 44 | cub1 of<br>T_1F | -     | UN | N | Y | N | L  | cub   | cub in 2014 | cub of<br>T_1F |
| 45 | cub2 of<br>T_1F | -     | UN | Ν | Y | Ν | L  | cub   | cub in 2014 | cub of<br>T_1F |

|    | cub3 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
|----|---------|-------|----|---|---|---|----|-------|---|---|
| 46 | T_1F    | CT 26 | UN |   |   |   |    |       |   |   |
|    | cub4 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
| 47 | T_1F    | -     | UN |   |   |   |    |       |   |   |
|    | cub1 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
| 48 | T_10F   | CT 24 | UN |   |   |   |    |       |   |   |
|    | cub2 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
| 49 | T_10F   | CT 21 | UN |   |   |   |    |       |   |   |
|    | cub3 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
| 50 | T_10F   | -     | UN |   |   |   |    |       |   |   |
|    | cub4 of |       |    | Ν | Y | Y | Y  | Y     | Y | Y |
| 51 | T_10F   | -     | UN |   |   |   |    |       |   |   |
| 52 | -       | CT6   | UN | N | Y | Y | Y  | Y     | Y | Y |
| 53 | -       | CT9   | UN | Ν | Y | Y | Y  | Y     | Y | Y |
| 54 | -       | CT14  | UN | Ν | Y | Y | Y  | Y     | Y | Y |
| 55 | -       | CT19  | UN | Ν | Y | Y | Y  | Y     | Y | Y |
| 56 | -       | CT22  | F  | N | N | Y | LR | adult |   |   |
| 57 | -       | CT25  | UN | Y | N | N | R  | adult |   |   |
| 58 | -       | CT27  | UN | N | N | Y | L  | adult |   |   |
|    |         |       | l  |   |   | l |    |       |   |   |

ID-LL – unique number of leopard individual in the database of Land of the Leopard ID-FRC – unique number of leopard individual in the database of Feline Research Center F – Female

M – Male

UN – Unknown Y – yes N – no

L – left

R – right